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Abstract

Determination of the axial force in terms of its natural frequencies may be significantly influenced by the bending

stiffness of the cable and the rotational elastic restraints at the ends, depending on the geometrical and mechanical

parameters of the cable and its supports and restraints, particularly in cement-grouted parallel-bundle wire cables. The

paper presents an explicit analytical expression for the natural frequencies taking into account both the bending stiffness of

the cable and the rotational restraint at the ends that may be used to determine the axial force. While the bending stiffness

of the cable and the axial force are selected as variables to attain an optimal match between analytical and experimental

data, the rotational stiffness at the ends is treated as a known parameter in that process. The degree of rotational restraint

at the ends cannot be accurately inferred from the sequence of the experimentally determined natural frequencies, since this

parameter does not appreciably affect the progression of their values. Techniques are discussed that allow approximate

determination of the rotational stiffness at the ends for the most common arrangements of anchors and cables with, and

without, intermediate supports provided by deviators located near the ends. The axial force and the bending stiffness of the

cable are both simultaneously adjusted by matching the natural frequencies of the analytical model with the experimental

values. The proposed approach leads to a reduction of the error in the estimation of the axial force for short cables with

relatively high bending stiffness such as those typical of cement-grouted parallel-bundle wire cables often used as cable

stays for bridges until the early 1990s.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Experimental determination of the axial force acting on cables has been found particularly useful in the
safety evaluation of the cables of existing bridges. Unexpected changes in their natural frequencies have been
found to originate in the loss of axial stiffness associated with the rupture of wires of their cross section,
leading to a redistribution of the axial forces among adjacent cables. The present work is concerned with
the interpretation of free vibration tests often performed on cables in order to measure their axial force
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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considering the elastic rotational restraints at their ends in a way that remains accurate even when the natural
frequencies of the cables are significantly affected by their bending stiffness.

Determination of the axial force acting on cable stays through the analysis of free vibration records is based
on the optimal selection of the parameters of an analytical model of the cables that matches the measured
fundamental frequency, or frequencies, of the cable. The basic tools in this process are on one side the
analytical model of the cable and its supports, and on the other side the experimental vibration records.
Several technical papers have been proposed in the past to address this problem in various ways depending on
the selection of the model parameters and on the experimental procedure used to collect the basic data.
Among them, Casas [1] has used an experimental setup whereby the fundamental mode of vibration of the
cable is excited by rhythmically oscillating a hanging weight in the vertical plane of the cable at a frequency
close to the fundamental one so as to produce significant response in that mode, and the axial force acting on
the cable is derived from the expression of the fundamental frequency of an ideal string, i.e. a cable with zero
bending stiffness, zero sag and infinite axial stiffness. The model parameters are the mass per unit length, the
cable free length and the axial force on the cable. This author proposed an optimization process that
determines the best estimate of the axial force by combining the data from free vibration records with those
given by strain-gauges and direct measurements of the axial force by hydraulic jacks. This approach was
aimed at taking into account the uncertainties of the cable free length defined by dampers and restraining
elastic collars near the ends of the cables. The inherent shortcomings of this ‘‘combined’’ approach are
associated with the practical issues of carrying out strain and force readings to complement the vibration
records.

In the paper of Ren et al. [2] empirical expressions to estimate cable tension based only on the cable
fundamental frequency were proposed as a linearization of energy methods accounting for the influence of
cable sag and bending stiffness. The main practical limitation of this approach lies in the difficulties to measure
the fundamental frequency and to take into account at the same time the bending stiffness and the cable sag.
As discussed in more detail in a further section, the cable sag has limited effect in the lower frequencies of the
cable in the vertical plane of the cable, but no influence in the frequencies associated with displacements
normal to that plane.

More recently, Smith and Johnson [3], and Smith and Campbell [4], have proposed to use for this purpose
records of wind- and traffic-induced cable oscillations collected near the ends of the cables in the vertical plane
of the cable, which are often of much larger amplitude than those normal to that plane. The fundamental
frequency is then determined through the weighted average of the difference between the frequencies of the
two consecutive higher modes, and the axial force is calculated by means of the expression for the ideal string.

A more recent paper by Geier et al. [5] proposed the simultaneous adjustment of the fundamental frequency
of the cable assumed as an ideal string, and the bending stiffness of the cable that modifies the uniform interval
between the successive natural frequencies through a dispersion effect. They derive the axial force from the
expression of the fundamental frequency of an ideal string, where that frequency is obtained taking into
account 20–25 frequencies identified from wind- and traffic-induced vibrations in the vertical plane of the
cable near the ends. In this process, these authors assumed either hinged or fixed end conditions for the cables,
thus not allowing for intermediate values of the end restraints. If the actual rotational stiffness at the ends is
not known, the axial force determined from the experimental frequencies may be significantly affected by this
parameter, and the axial force obtained from the assumption of free or fixed rotations at the supports may
appreciably depart from its true value depending on the assumption adopted, especially when the cable is
relatively short and has high bending stiffness typical of parallel-bundle wire cables encased in mortar-grouted
PE pipes that were often used up to the 1990s in cable-stayed bridges [6]. The axial force acting on the original
parallel-bundle wire cables of the Zárate-Brazo Largo Bridges described in earlier work by Prato and Ceballos
[7] has been found to vary more than 10 percent depending on whether fixed or free rotations are assumed at
the ends thus bringing into attention the need to account for the actual rotational stiffness at the ends.

In this paper a procedure to obtain the axial force by simultaneous adjustment of the force and bending
stiffness to 20–25 experimentally identified frequencies is presented. The vibration records are obtained by
recording the horizontal acceleration response due to a hand-applied impulse normal to the vertical plane of
the cable at a point near the bottom end at a known distance from the end restraints. This is found to be a
good choice to reduce as much as possible the influence of the assumption that the cable is axially rigid and
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without sag, as assumed in evaluation of the natural frequencies with the analytical model, and to reduce the
coupling of wind- and traffic-induced vibrations with the test results.

As mentioned earlier, to obtain improved accuracy in the axial force, an estimation of the rotational
stiffness at the cable ends is required. This cannot be achieved only on the basis of the values of the natural
frequencies since their progression is not sensitive to that parameter and a special technique is needed. For
cables without intermediate supports the rotational stiffness is essentially frequency independent and may be
experimentally estimated by detecting the lowest mode for which the accelerometer located at a known
distance from the cable end has the smallest (zero, or near-zero) spectral amplitude in the tests. Since the
experimental signals used in the analysis are associated with an applied impulse, the intensity of the test
impulse to attain an acceptable noise/signal ratio may be adjusted for that purpose. For cables with
intermediate supports such as those provided by collars or deviators, the rotational stiffness is frequency
dependent and may be analytically estimated in terms of the distance between the intermediate support and
the cable end, the axial force and the bending stiffness of the cable. The free length adopted for the analytical
model of the cable is the distance between the intermediate supports and an iterative adjustment procedure is
needed since the axial force is both a required parameter and also the final result of the analysis.

2. Dynamics of a cable with bending stiffness

A basic assumption in the foregoing analysis of the test data is that the cable sag does not have a significant
influence on the measured frequencies of the cable. This assumption, supported by a parametric analysis
presented at the end of this section, is applicable when the test excitation is applied normal to the vertical plane
of the cable. The experimental procedure aims at determining the frequencies in the range of the 5th to the
20th mode, rather than the fundamental mode.

2.1. Determination of the natural frequencies

The governing differential equation for the free vibrations of a straight cable according to Clough and
Penzien [8] is

EI uivðxÞ yðtÞ �N u00ðxÞ yðtÞ þm uðxÞ €yðtÞ ¼ 0, (1)

where EI is the bending stiffness of the cable, N is the axial force acting on the cable and m is the mass per unit
length of cable. Superscript (0) denotes differentiation with respect to x, and (�) differentiation with respect to
time t. Substituting yðtÞ ¼ eiot and simplifying one arrives at

EI uivðxÞ �N u00ðxÞ �mo2 uðxÞ ¼ 0. (2)

The modal shapes of the cable are obtained in the form

uðxÞ ¼ D1 sinðdxÞ þD2 cosðdxÞ þD3 sinhðexÞ þD4 coshðexÞ, (3)

where

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a4 þ g4
p

þ g2

q
, (4a)

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a4 þ g4
p

� g2

q
, (4b)

and

a4 ¼
mo2

EI
, (5a)

g2 ¼ �
N

2EI
. (5b)

A suitable description of the boundary conditions imposed on the anchorage devices is obtained through
rotational springs with constants KA and KB acting in the cable ends. The degree of fixity in the supports can
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be represented through the non-dimensional parameters kA and kB defined as

kA ¼
KAL

KALþ p4EI
therefore

KA

EI
¼

p4

L

kA

ð1� kAÞ
, (6a)

kB ¼
KBL

KBLþ p4EI
therefore

KB

EI
¼

p4

L

kB

ð1� kBÞ
, (6b)

where L is the length of the cable. The boundary conditions used to determine the constants D1 through D4

from Eq. (3) are

u0 ¼ 0 therefore D2 þD4 ¼ 0, (7a)

uL ¼ 0 therefore D1 sinðdLÞ þD2 cosðdLÞ þD3 sinhðeLÞ þD4 coshðeLÞ ¼ 0, (7b)

K u00 ¼ EI u000 therefore p4kAðdD1 þ eD3Þ þ Lð1� kAÞðd
2D2 � e2D4Þ ¼ 0, (7c)

K u0L ¼ � EI u00L therefore p4kB

dD1 cosðdLÞ � dD2 sinðdLÞ

þ � � � þ eD3 coshðeLÞ þ eD4 sinhðeLÞ

 !

þ � � � þ Lð1� kBÞ
�d2D1 sinðdLÞ � d2D2 cosðdLÞ

þ � � � þ e2D3 sinhðeLÞ þ e2D4 coshðeLÞ

 !
¼ 0. (7d)

The natural frequencies are obtained from the condition that the determinant of the boundary conditions is set
equal to zero:

det

0 sinðdLÞ p4kAd p4kBd cosðdLÞ � Lð1� kBÞd
2 sinðdLÞ

1 cosðdLÞ Lð1� kAÞd
2
�p4kBd sinðdLÞ � Lð1� kBÞd

2 cosðdLÞ

0 sinhðeLÞ p4kAe p4kBe coshðeLÞ þ Lð1� kBÞe2 sinhðeLÞ

1 coshðeLÞ �Lð1� kAÞe2 p4kBe sinhðeLÞ þ Lð1� kBÞe2 coshðeLÞ

2
66664

3
77775

T0
BBBB@

1
CCCCA ¼ 0. (8)

Expanding Eq. (8) and dividing by coshðeLÞ one arrives at

p4LðkA þ kB � 2kAkBÞðd
2
þ e2Þ½e sinðdLÞ � d cosðdLÞ tanhðeLÞ�

þ � � � þ ½L2ð1� kA � kB þ kAkBÞðd
2
þ e2Þ2 � p8kAkBðd

2
� e2Þ� sinðdLÞ tanhðeLÞ

þ � � � þ 2p8kAkBde½sechðeLÞ � cosðdLÞ� ¼ 0. (9)

Parameter eL is obtained such that

eLX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2p2 þ 1=b2

q
, (10)

where

b ¼
1

L

ffiffiffiffiffiffi
EI

N

r
(11)

is a non-dimensional form of the bending stiffness. The parameter b is the inverse of x defined by Geier et al. in
[5]. The equality condition in Eq. (10) is only attained for the doubly hinged condition (kA ¼ kB ¼ 0), while
for typical bending stiffness (bo0:03) one may assume

tanhðeLÞ ¼ 1, (12a)

sechðeLÞ ¼ 0. (12b)
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Under these assumptions, Eq. (9) takes on the form

p4LðkA þ kB � 2kAkBÞðd
2
þ e2Þ½e sinðdLÞ � d cosðdLÞ� � 2p8kAkBde cosðdLÞ

þ � � � þ ½L2ð1� kA � kB þ kAkBÞðd
2
þ e2Þ2 � p8kAkBðd

2
� e2Þ� sinðdLÞ ¼ 0. (13)

Re-arranging terms, one arrives at

A sinðdLÞ þ B cosðdLÞ ¼ 0, (14)

where

A ¼ p8kAkBðd
2
� e2Þ � L2ð1� kA � kB þ kAkBÞðd

2
þ e2Þ2 � p4LðkA þ kB � 2kAkBÞðd

2
þ e2Þe, (15a)

B ¼ 2p8kAkBdeþ p4LðkA þ kB � 2kAkBÞðd
2
þ e2Þd. (15b)

Eq. (14) may also be expressed in the form

r sinðdLþ yÞ ¼ 0, (16)

where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
, (17a)

y ¼ atanðB=AÞ. (17b)

Then

dLþ y ¼ np with n ¼ 0; 1; 2; . . . ;1. (18)

The value on of the natural frequency of mode n of the cable may then be obtained from the parameter d in
Eq. (18) using Eqs.(4) and (5), aside the fact that yn is also a function of on through d and e according to
Eqs. (17b), (15), (4) and (5), by means of the following expression:

on ¼ 2pf n ¼
ðnp� ynÞ

L

ffiffiffiffiffi
N

m

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2ðnp� ynÞ

2

q
. (19)

Eq. (19) provides an explicit expression for the natural frequencies of the cable in terms of parameter yn that is
found to be convenient for practical applications in an iterative mode. Parameter yn becomes zero for the
hinged end condition (kA ¼ kB ¼ 0), so that no iterations are needed in that case. For kAa0 and/or kBa0 the
iterations start with the calculation of the natural frequency of mode n with Eq. (19) for yn ¼ 0. With such
initial value of this frequency, Eqs. (4), (5), (15) and (17b) are used to calculate an approximation of yn, which
in turn is used to calculate again on from Eq. (19), thus completing the cycle of iteration to be repeated until
the desired accuracy is attained. Eq. (19) remains accurate even for high bending stiffness values (b � 0:03)
unlike the approximate expression proposed in Ref. [5] to obtain the natural frequencies of cables assuming
fixed rotations at the ends, which may lead to errors higher than 10 percent for frequencies higher than the
20th mode when the non-dimensional bending stiffness is b ¼ 0:02 or larger.

2.2. Sag effect on cable frequencies

To illustrate the effect of the sag of the cable on the natural frequencies of a typical stay cable for
which the foregoing testing and analysis are aimed, a grouted parallel-bundle cable with two different
lengths was considered. The cross section of the cable (Zárate-Brazo Largo Bridges) used in the para-
metric illustration is composed of 130 parallel 7mm diameter wires. The steel section of the cable is O ¼
0:0050m2 and the mass per unit length is m ¼ 0:059 tn=m. The bending stiffness obtained from the
tests as explained further on the paper is EI ¼ 850 kNm2. The diameter of the composed section (grout and
steel) used only to define two different sag/diameter ratios is approximately f ¼ 0:15m. The cable lengths
were selected so as to lead to different sags with the same permanent axial stress s ¼ 400MPa and to the
same axial force N ¼ sO ¼ 2000 kN. The cable is assumed to be of hinged ends, both supports to have
the same elevation and the shear deformations negligible in the range of frequencies of interest. The cable sag
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Table 1

Natural frequencies of the short cable (Hz)

Order Straight cable f S
n

Sagged cable

In-plane Out-of-plane

f I
n f I

n=f S
n f O

n f O
n =f S

n

1 1.4302 1.4403 1.0071 1.4302 1.0000

2 2.8647 2.8646 1.0000 2.8647 1.0000

3 4.3079 4.3082 1.0001 4.3079 1.0000

4 5.7639 5.7639 1.0000 5.7639 1.0000

5 7.2371 7.2372 1.0000 7.2371 1.0000

6 8.7315 8.7315 1.0000 8.7315 1.0000

7 10.251 10.251 1.0000 10.251 1.0000

8 11.800 11.800 1.0000 11.800 1.0000

9 13.382 13.382 1.0000 13.382 1.0000

10 15.000 15.000 1.0000 15.000 1.0000
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is given by

s ¼
mgL2

8N
, (20)

while the natural frequencies without sag are given by the closed form expression derived from Eq. (19):

f n ¼
n

2L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

m
þ

EI

mL2
ðnpÞ2

r
. (21)

The first case analyzed corresponds to a short cable with a sag s ¼ 1f ¼ 0:15m that is obtained according to
Eq. (20) with a length L ¼ 64:4m. The second case corresponds to a long cable with a sag s ¼ 10f ¼ 1:50m
that is obtained with a length L ¼ 203:7m.

Tables 1 and 2 give the natural frequencies of the in-plane and out-of-plane modes for a short cable and for
a long one. These natural frequencies were calculated with a numerical model composed of 500 elements of the
same horizontal length. The natural frequencies for the straight cable calculated with the numerical model
agree with those obtained with Eq. (21), while the natural frequencies of the in-plane modes for the sagged
cable obtained with this model agree with the analytical ones presented by Irvine [9]. In Table 1 it can be
observed that only the first in-plane frequency is slightly affected by the sag, and none of the out-of-plane
ones. Table 2 shows that only the first three in-plane frequencies are modified by the sag while none of the out-
of-plane frequencies are modified by the sag.

From these results it follows that the effect of the sag in the out-of-plane frequencies is negligible in both
short and long cables typical of the sag/diameter ratios found in cable-stayed bridges.
3. Simultaneous adjustment of the axial force and bending stiffness

A least squares minimization of the following norm is now proposed in order to obtain a balanced
adjustment for a set of 20–25 natural frequencies:X

n

½ ~f n � f 2
n=
~f n�

2 ¼ minimum, (22)

where ~f n are the experimentally determined values of the frequencies and f n are the frequencies of the
analytical model. Substituting Eq. (19) in Eq. (22) and multiplying by ð4p2mL4Þ one arrives atX

n

½4p2mL4 ~f n �NL2ðnp� ynÞ
2= ~f n � EIðnp� ynÞ

4= ~f n�
2 ¼ minimum. (23)
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Fig. 1. Progression of non-dimensional frequencies.

Table 2

Natural frequencies of the long cable (Hz)

Order Straight cable f S
n

Sagged cable

In-plane Out-of-plane

f I
n f I

n=f S
n f O

n f O
n =f S

n

1 0.4519 0.4829 1.0685 0.4519 1.0000

2 0.9040 0.9038 0.9997 0.9040 1.0000

3 1.3564 1.3575 1.0008 1.3564 1.0000

4 1.8092 1.8091 1.0000 1.8092 1.0000

5 2.2625 2.2627 1.0001 2.2625 1.0000

6 2.7165 2.7164 1.0000 2.7165 1.0000

7 3.1713 3.1714 1.0000 3.1713 1.0000

8 3.6271 3.6270 1.0000 3.6271 1.0000

9 4.0840 4.0840 1.0000 4.0840 1.0000

10 4.5421 4.5421 1.0000 4.5421 1.0000
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The minimizing variables are the axial force N and the bending stiffness EI. The parameters of the rotational
stiffness at the cable ends are not included in the list of minimizing variables since the error function is not
sensitive to their values. Fig. 1 shows the non-dimensional frequencies f n for given b values and for k ¼

kA ¼ kB taking values 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 with

f n ¼
f n

n f 1

, (24)

where f 1 is the fundamental frequency assuming hinged ends and n is the order of the mode. The influence of k

on the progression of the natural frequencies according to Fig. 1 is only noticeable for relatively large values of
b. Therefore, the values of kA and kB must be obtained prior to the minimization process as shown in the
following section.
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Parameter yn is a function of both N and EI, although for the purpose of adjustment that dependence is not
taken into account. This process is then carried out by iterations to introduce successive corrections in the
values of yn. The derivatives of Eq. (23) with respect to the minimizing variables N and EI lead toX

n

½4p2mL4 ~f n �NL2ðnp� ynÞ
2= ~f n � EIðnp� ynÞ

4= ~f n�ðnp� ynÞ
2= ~f n ¼ 0, (25a)

X
n

½4p2mL4 ~f n �NL2ðnp� ynÞ
2= ~f n � EIðnp� ynÞ

4= ~f n�ðnp� ynÞ
4= ~f n ¼ 0. (25b)

Equivalently

NL2
X

n

ðnp� ynÞ
4= ~f 2

n þ EI
X

n

ðnp� ynÞ
6= ~f 2

n ¼ 4p2mL4
X

n

ðnp� ynÞ
2, (26a)

NL2
X

n

ðnp� ynÞ
6= ~f 2

n þ EI
X

n

ðnp� ynÞ
8= ~f 2

n ¼ 4p2mL4
X

n

ðnp� ynÞ
4. (26b)

Separating the adjustment variables one arrives at

N ¼ 4p2mL2

P
nðnp� ynÞ

6= ~f 2
n

P
nðnp� ynÞ

4
�
P

nðnp� ynÞ
8= ~f 2

n

P
nðnp� ynÞ

2

ð
P

nðnp� ynÞ
6= ~f 2

nÞ
2
�
P

nðnp� ynÞ
8= ~f 2

n

P
nðnp� ynÞ

4= ~f 2
n

, (27)

EI ¼ 4p2mL4

P
nðnp� ynÞ

6= ~f 2
n

P
nðnp� ynÞ

2
�
P

nðnp� ynÞ
4= ~f 2

n

P
nðnp� ynÞ

4

ð
P

nðnp� ynÞ
6= ~f 2

nÞ
2
�
P

nðnp� ynÞ
8= ~f 2

n

P
nðnp� ynÞ

4= ~f 2
n

. (28)

Convergence of the adjustment variables is found to be quite fast with very small loss of accuracy.

4. Evaluation of the rotational stiffness of the cable ends

The value of the rotational stiffness depends on the configuration of the supports at the cable ends. For the
case of cables without deviators or dampers at the ends, a technique to determine that stiffness based on
experimental information is proposed and assessed. For cables with intermediate supports between the end
anchors in the form of deviators or elastic collars, an analytical procedure based on the geometrical
arrangement of the supports, on the magnitude of the axial force and on the bending stiffness of the cable, is
proposed in what follows.

4.1. Cables without intermediate supports

The following technique assumes that both cable ends possess identical rotational stiffness k ¼ kA ¼ kB.
The position of the nodes (zero amplitude points) for each mode depends on the bending stiffness b and on the
rotational stiffness k. The position of the acceleration sensor used to obtain the cable response during the tests
is known, and the order of the lowest mode that presents a node in coincidence with the location of this
transducer can be obtained from the Fourier amplitude spectrum of the experimental records. The distance
from the bottom end to the first node closer to this end is represented by parameter D. A non-dimensional
version of this distance defined as

D ¼ n
D

L
(29)

is shown in Fig. 2 in function of the mode number and the rotational stiffness for given values of the bending
stiffness b ¼ 0:02 and 0.03. Similar curves for other values of the bending stiffness b, which can be
experimentally obtained by means of Eq. (28) for hinged ends, may provide the estimation of the rotational
stiffness k for any other cases.

Fig. 3 shows an analytically generated Fourier amplitude spectrum of the free vibrations of a cable with
b ¼ 0:02 for the acceleration sensor located at a distance D ¼ 0:05L with respect to the bottom anchor;
the lowest frequency that presents a node there is approximately 38Hz which corresponds to the 22nd mode.
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Fig. 2. Position of first nodes for cables with b ¼ 0:020 and 0.030.
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Fig. 3. Analytical FT amplitude density of the acceleration of free vibration of a cable with b ¼ 0:02 and k ¼ 0:50.
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For n ¼ 22 and D ¼ n 0:05 ¼ 1:10, Fig. 2 gives a value of k ¼ 0:53 (point A) which is very close to the value
k ¼ 0:50 used to derive the amplitude spectrum of Fig. 3. The small difference is due to the fact that the value
of n would be 21:85 instead of 22 for the given location of the accelerometer. This procedure to determine k

turns out to be more accurate for increasing values of b.
Fig. 4 shows a typical spectrum of cable response to the test impact for a cement-grouted parallel-bundle

wire cable used in Zárate-Brazo Largo Bridges [6]. This particular cable has a length L ¼ 52:66m and a mass
per unit length of m ¼ 0:1376 tn=m. The design of these cables is such that the 30 cm of cable at both ends were
not grouted with the intention to provide more flexibility and to approximate the hinged condition. Therefore
it is not surprising that the equivalent rotational stiffness at the ends as derived with the foregoing procedure is
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Fig. 4. Typical experimental FT amplitude density of the acceleration of free vibration tests of a cable.

Table 3

Adjusted parameters for an actual cable

Parameter Experiment k ¼ 0:00 k ¼ 1:00

N (kN) – 2464 2159

EI (kN) – 5154 4796

b – 0.0275 0.0283

f 1 (Hz) – 1.28 1.27

f 2 (Hz) – 2.58 2.56

f 3 (Hz) 3.90 3.94 3.91

f 4 (Hz) 5.36 5.38 5.35

f 5 (Hz) 6.89 6.92 6.90

f 6 (Hz) 8.57 8.58 8.57

f 7 (Hz) 10.37 10.39 10.38

f 8 (Hz) 12.33 12.35 12.35

f 9 (Hz) 14.47 14.48 14.49

f 10 (Hz) 16.79 16.78 16.80

f 11 (Hz) 19.29 19.27 19.29

f 12 (Hz) 22.00 21.94 21.96

f 13 (Hz) 24.85 24.81 24.83

f 14 (Hz) 27.94 27.89 27.90

f 15 (Hz) 31.17 31.17 31.16
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close to zero. This singularity at the ends, however, has been shown to lead to stress concentrations at the
cable ends due to dynamic effects at the ends as discussed by Prato and Ceballos in Ref. [7].

Table 3 presents the experimental frequencies adjusted to the hinged end (k ¼ 0:00) and fixed end (k ¼ 1:00)
conditions. This table also gives the axial force and bending stiffness as obtained from Eqs.(27) and (28) for
both limiting cases of rotational restraints. The difference in the axial force derived for these conditions is
larger than 12 percent even when a good fit between the natural frequencies in both cases is obtained. This
result emphasizes the importance of having a good estimate of the rotational stiffness at the ends to achieve an
accurate measure of the axial force. In contrast, the bending stiffness b derived for both limiting cases of end
restraints does not exhibit appreciable differences, and the value of b ¼ 0:0275 for the hinged end condition is
adequate for the determination of k. The location of the transducer at 2.80m from the ends detects a node at
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approximately 45Hz, which corresponds to the 19th mode (see Fig. 4). The value of non-dimensional distance
for n ¼ 19 becomes D ¼ 19 2:80=52:66 ¼ 1:01. Curves given in Fig. 2 for b ¼ 0:020 and 0.030 are very close to
each other leading to a rotational stiffness k � 0:05 (point B), which is very close to the hinged condition.

4.2. Cables with intermediate supports

A typical configuration for a cable indicated in Fig. 5 is composed of deviators to distances LA of the lower
anchor and LB of the upper anchor, without own rotational stiffness, that only restrain the transversal
displacement. The influence on the natural frequencies of the degree of fixity of the cable in the anchors
decreases with increasing values of the distances LA and LB with respect to the length of the cable between the
deviators.

The contribution of the spans LA and LB in the dynamic behavior of the cable can be represented
without precision losses placing rotational springs with frequency dependent dynamic stiffness in corres-
pondence with the deviators. The end conditions that allow determination of constants D1 to D4 of the general
solution in Eq. (3) for a generic span of length L0 with hinged end conditions assuming a harmonic unit
rotation on the deviators are as follows:

u0 ¼ 0 therefore D2 þD4 ¼ 0, (30a)

uL0
¼ 0 therefore D1 sinðdL0Þ þD2 cosðdL0Þ þD3 sinhðeL0Þ þD4 coshðeL0Þ ¼ 0, (30b)

u000 ¼ 0 therefore � d2D2 þ e2D4 ¼ 0, (30c)

u0L0
¼ 1 therefore dD1 cosðdL0Þ � dD2 sinðdL0Þ þ eD3 coshðeL0Þ þ eD4 sinhðeL0Þ ¼ 1. (30d)

The dynamic stiffness of the rotational spring results:

K0 ¼ EI u00L ¼ EI
sinðdL0Þ tanhðeL0Þ ðd

2
þ e2Þ

e sinðdL0Þ � d cosðdL0Þ tanhðeL0Þ
. (31)

The static stiffness that can be utilized for relatively low modes (n5L=L0) arises out of the limit of Eq. (31) to
o! 0:

K0
o!0 ¼

N L0

ðcothðaL0Þ aL0 � 1Þ
with a ¼

ffiffiffiffiffiffi
N

EI

r
. (32)

The end conditions for a generic span of length L0 assumed fixed-hinged are identical to Eq. (30), except that
Eq. (30c) should be replaced for

u00 ¼ 0 therefore dD1 þ eD3 ¼ 0. (33)

The dynamic stiffness of the rotational spring results in this case:

K1 ¼ EI
ðd cosðdL0Þ tanhðeL0Þ � e sinðdL0ÞÞ ðd

2
þ e2Þ

2 d e ðcosðdL0Þ � sechðeL0ÞÞ þ sinðdL0Þ tanhðeL0Þ ðd
2
� e2Þ

. (34)

The static stiffness that can be utilized for relatively low modes (n5L=L0) arises out of the limit of Eq. (34) to
o! 0:

K1
o!0 ¼

N L0 ðcothðaL0Þ aL0 � 1Þ

a2L2
0 � 2 aL0 ðcothðaL0Þ � cschðaL0ÞÞ

with a ¼

ffiffiffiffiffiffi
N

EI

r
. (35)
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One may use the expressions of Eqs. (31) and (34) to define the stiffness of the rotational springs during the
adjustment process considering that the values obtained turn out to be similar for growing distances between
anchors and deviators. The variability with frequency of the values of rotational stiffness does not present
practical difficulties during the application of the recurrence expressions of Eqs. (27) and (28). The dynamic
stiffness of these springs becomes null for the frequency of resonance of the span L0 taking even negative
values for greater frequencies. Since the stiffness varies quickly near the resonance it is recommended to adjust
low order modes with natural frequencies far away to this resonance to avoid using stiffness estimations with
unacceptable errors.

5. Sensitivity of the analysis

In this section special considerations are made regarding influence of different assumptions introduced in
the foregoing analysis to determine the axial force.

5.1. Influence of the rotational stiffness at the ends

The work of Geier et al. [5] presents the following approximated expression that provides an estimate of the
difference in the axial force of the cable due to the two limiting cases of fixed and free rotations at the ends:

DN

N
¼ 4b. (36)

The linearization that involves Eq. (36) is independent of the order of the mode, although this expression turns
out to be strictly applicable only for small values of b. In the present study the following expression obtained
considering the simultaneous adjustment of 20 modes of a numerical simulation in Eq. (22) is proposed to
extend the validity of Eq. (36) to values of up to b � 0:03:

DN

N
¼ 4bþ 1:5b2 þ 1800b3. (37)

As an example, the difference in the estimation of the axial force of a cable such as that reported in Ref. [5] for
bmax � 0:01 turns out to be DN=N � 4 percent, while for the cables of the Zarate-Brazo Largo Bridges for
bmax � 0:025 it goes up to DN=N � 12 percent.

5.2. Influence of the shear flexibility and rotational inertia

Grouted parallel-bundle cables which are the focus of this work may be regarded as slender composite
section beams where the cement grout contributes very significantly to the overall bending stiffness of the
cable. As such, the influence of the shear flexibility of the composite section in the natural frequencies may
become significant for higher modes such as those excited and measured in the proposed experimental
procedure, even though it is beyond discussion that such modes are not relevant for the behavior of the cables
under typical loads acting on the stay cables of a bridge. The subject is only brought into attention in order to
assess the effect of the shear flexibility of the composite cable cross section in the higher natural modes excited
in the tests by the impulsive test loads.

The authors have not found in the literature a discussion of the influence of the shear flexibility and the
rotational inertia on the progression of the natural frequencies of the cable. The effect of the bending stiffness
can be appreciable since the lowest natural frequencies while the shear flexibility and the rotational inertia
have a larger incidence in higher modes. A convenient alternative to limit the influence of these parameters
consists of defining a maximum number of modes to consider during the adjustment process. Such maximum
number is derived from the differential equation taking into account the transverse shear flexibility and the
rotational inertia as in [8]

EI uivðxÞ yðtÞ �N u00ðxÞ yðtÞ þm uðxÞ €yðtÞ �m
EI

GAc

þ r2
� �

u00ðxÞ €yðtÞ þ
m2r2

GAc

uðxÞ y
���
ðtÞ ¼ 0, (38)
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where GAc is the shear stiffness constant and r is the radius of gyration of the cross section. In order to capture
the influence of these parameters on the natural frequencies only the hinged end condition of available
analytical resolution is considered. The modal shapes associated with a cable hinged at the two ends are

uðxÞ ¼ sin
np
L

x
� �

. (39)

Substituting Eq. (39) in Eq. (38) with yðtÞ ¼ eiot, one arrives at

EI
np
L

� �4
þN

np
L

� �2
�mo2 �mo2 EI

GAc

þ r2
� �

np
L

� �2
þm2o4 r2

GAc

¼ 0. (40)

The last term of Eq. (40) originates from the coupling of shear deformations and rotational inertia only affects
the higher modes where the influence of direct terms is preponderant. The natural frequencies neglecting this
term are obtained by the expression

ôn ¼ 2pf̂ n ¼
np
L

ffiffiffiffiffi
N

m

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2n2p2

1þ EI
GAcL2 þ

r2

L2

� �
n2p2

vuut . (41)

Assuming steel cables with a solid circular cross section,

E ¼ 2:6G, (42a)

Ac ¼ 0:9A, (42b)

and thus

EI

GAcL2
þ

r2

L2

� �
�

4

l2
, (43)

where

r ¼

ffiffiffiffi
I

A

r
, (44a)

l ¼
L

r
. (44b)

Eq. (41) then becomes

ôn ¼ 2pf̂ n ¼
np
L

ffiffiffiffiffi
N

m

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2n2p2

1þ 4p2n2=l2

s
. (45)

The denominator of the last root of Eq. (45) represents the effect of the shear deformations and rotational
inertia, which becomes more significant as the order mode n increases and the slenderness l decreases. As an
example, to attain an error bound of 1 percent in the estimation of the axial force, a maximum error of 0.5
percent must be warranted in the natural frequency:

ðf n � f̂ nÞ=f̂ np0:005, (46a)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p2n2=l2

q
� 1p0:005. (46b)

Then

np0:01594 l. (47)

From a practical point of view it is not convenient to take more than 25 or 30 modes. Eq. (47) gives then the
maximum number of modes that could be considered in the analysis of the experimental results to limit
the influence of the shear deformations and rotational inertia. The cables of the Danube Channel Bridge [5]
have a slenderness of about l � 3000 ðn ¼ 50Þ. In contrast, the largest slenderness ratio of the cables of the
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Zarate-Brazo Largo Bridges [6] turns out to be lmax � 7000 ðn ¼ 110Þ while the minimum slenderness is
only lmin � 1500 ðn ¼ 25Þ.

5.3. Influence of the transverse stiffness of the intermediate supports

Casas [1] considers that the definition of the effective length of the cable for the case of complex anchor
devices can result in a critical aspect in determining the axial force. Geier et al. [5] propose to measure the
distance among nodes of high modes near the ends to calculate then the effective length as the product of this
distance by the order of the corresponding mode. In the case of cable with relatively flexible intermediate
supports one can obtain acceptable precision in the estimation of the axial force by applying adjustment
techniques typical of experimental modal analysis, as proposed by Kim and Park [10], with both rotational
and translational springs.

6. Conclusions

A procedure to obtain the axial force acting on a cable from free vibration tests has been presented. The
proposed experimental procedure is a simple, reliable and easy to apply method that can readily be carried out
with a single accelerometer to record the response to a hand-induced impulse applied near the cable ends in the
horizontal direction normal to the vertical plane of the cable. In this way estimation of the cable force becomes
independent of the elastic axial stiffness and of the sag of the cable. The proposed adjustment procedure does
not require mobilizing appreciable response of the fundamental mode since the higher modes used in the
optimization scheme may be more easily excited close to the cable ends.

In contrast to recent work [10] on the subject where numerical models are used, here the analysis is carried
out as in earlier references [1–5] through analytical solutions, and the axial force is derived by optimizing the
correspondence between measured and analytical natural frequencies considering as simultaneous adjustment
variables the axial force and the bending stiffness of the cable. It is shown that the influence of the rotational
stiffness at the cable ends on the estimation of the axial force increases with the bending stiffness of the cable
and thus it is of special interest in the case of grouted parallel-bundle wire cables of proportions typical of
existing cable-stayed bridges.

The natural frequencies of a cable with elastic rotations restraints at the ends has been derived in an explicit
form as given in Eq. (19), although its application to derive the value of the axial force on the cable requires an
iterative sequence since parameter y is a function of the natural frequency itself unless the cable is doubly
hinged at the ends. For cables with deviator collars near the ends an analytical solution is proposed to derive
the rotational stiffness at the supports, while an experimental procedure is proposed for the case of cables
without deviators. The effect of the rotary inertia and shear stiffness of the study cables is found not to affect
the estimation of the axial force as long as the number of modes used is limited to the lowest 20–25 modes.
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